Solubility, Density and Thermodynamic Functions of Catechol in Pure Water, 1-Propanol and Their Binary Solvent Mixtures at 293.15 to 313.15 K Temperatures

By

Chandrakant S. Aher

ISSN 2319-3077 Online/Electronic ISSN 0970-4973 Print

UGC Approved Journal No. 62923 MCI Validated Journal Index Copernicus International Value IC Value of Journal 82.43 Poland, Europe (2016) Journal Impact Factor: 4.275 Global Impact factor of Journal: 0.876 Scientific Journals Impact Factor: 3.285 InfoBase Impact Factor: 3.66

J. Biol. Chem. Research Volume 36 (1) 2019 Part D, Pages No. 105-113

Journal of Biological and Chemical Research

An International Peer Reviewed / Referred Journal of Life Sciences and Chemistry

Indexed, Abstracted and Cited in various International and National Scientific Databases

Published by Society for Advancement of Sciences®

J. Biol. Chem. Research. Vol. 36, No. 1: Part D, 105-113, 2019

(An International Peer Reviewed / Refereed Journal of Life Sciences and Chemistry) Ms 36/02/28/2019 All rights reserved ISSN 2319-3077 (Online/Electronic) ISSN 0970-4973 (Print)

Dr. C. S. Aher http:// www.sasjournals.com http:// www.jbcr.co.in jbiolchemres@gmail.com

Accepted: 12/06/2019

RESEARCH PAPER

Received: 26/05/2019

Revised: 11/06/2019

Solubility, Density and Thermodynamic Functions of Catechol in Pure Water, 1-Propanol and Their Binary Solvent Mixtures at 293.15 to 313.15 K Temperatures **Chandrakant S. Aher**

Department of Chemistry, M.S.G. College Malegaon Camp, Pin 423105. India

ABSTRACT

Solubility of catechol in water, 1-propanol and in water+1-propanol binary mixtures have been experimentally measured using a gravimetric method at temperatures (293.15, 295.15, 298.15, 300.15, 303.15, 305.15, 308.15, 310.15 & 313.15) K. Catechol solubility values are correlated with temperature by using the Apelblat equation. The combined nearly ideal binary solvent (NIBS)-Redlich-Kister equation is used to fit experimental solubility data in mixed solvents at constant temperature. The modified van't Hoff equation is used to obtained thermodynamic functions including ΔH^{0}_{soln} , ΔG^{0}_{soln} and ΔS^{0}_{soln} of catechol in different solvents.

Keyword: Solubility, Catechol, NIBS, Density, van't Hoff equation and Apelblat equation.

INTRODUCTION

Fruits and vegetables are natural source of catechol in small amount; it is one of the main natural phenols in argan oil (Zheng et al, 2008). Solubility data is required for selection of proper solvent and design an optimized crystallization process, solubility of catechol in pure solvents for some temperatures are available (Stephan H. and Stephen T., 1963). But there are no data available on solubility of catechol in water+1-propanol for the complete binary composition range. In this paper the systematic study of solubility and density of catechol in water + 1-propanol binary solvents over the entire composition range from 0 to 1 mole fraction, at temperatures (293.15 to 313.15) K is reported. The thermodynamic functions for saturated catechol solution are calculated using modified van't Hoff equation.

MATERIALS AND METHOD

Material

Triple distilled water was used in all experiments. Other chemicals was supplied by

Chemical Name	Supplier Name	Percentage purity	Standard
Catechol	Sigma-Aldrich co.	≥99%	Reagent Grade
1-Propanol	Spectrochem Pvt. Ltd, Mumbai, India.	≥99.8%	HPLC

J. Biol. Chem. Research

Apparatus and Procedure

The solubility of catechol is measured using an apparatus similar to that described in the literature (Pawar et al 2012, Pawar et al 2009, Pawar et al 2010). In this work, an excess amount of catechol was added to the binary solvents mixtures prepared by weight (Shimadzu, Auxzzo) with an uncertainty of ± 0.1 mg, in a specially designed 100 ml double jacketed flask. Water was circulated at constant temperature in jacket between the outer and inner walls of the flask. Densities were determined using a 15 cm³ bicapillary pycnometer, these data are used to explained excess functions as described earlier. (Kadam et al, 2006, Hasan et al, 2006, Marsh K. N. 1987, Pawar R.R. and Aher C. S. 2017, Pawar R.R. and Aher C. S. 2017, Pawar R.R. and Aher C. S. 2018).

RESULTS AND DISCUSSION

Solubility: Table 1 show the experimental and calculated (using Apelblat equation) values of solubility (x_B) of catechol at 293.15 to 313.15 K in water, 1-propanol and water + 1- propanol respectively. The density of saturated solution is also reported. Variation of solubility with x_c^0 is visually shown in Fig. 1.

T/(K)	x ⁰	$\chi_{B(arn)}$	$\chi_{B(cal)}$	RD	0 10 ⁻³ /kg m ⁻³
-/()	0,0000	0.0752	0.0749	0.0048	1 0732
	0.1000	0.1897	0.1887	0.0052	1.0732
	0.2001	0.2418	0.2412	0.0023	1.0912
	0.2999	0.2774	0.2765	0.0032	1.0698
	0.4001	0 2999	0.3006	0.0021	1.0562
293 15	0.5000	0.3201	0.3182	0.0058	1.0002
270.10	0.6000	0.3169	0.3187	0.0058	1.0326
	0.6998	0.3422	0.3417	0.0014	1.0209
	0.8002	0.3480	0.3492	0.0036	1.0101
	0.8999	0.3498	0.3515	0.0049	0.9999
	1.0000	0.3355	0.3407	0.0157	1.0224
	0.0000	0.0888	0.0895	0.0078	1.0828
	0.1000	0.1996	0.2008	0.0057	1.0970
	0.2001	0.2498	0.2510	0.0045	1.0845
	0.2999	0.2845	0.2868	0.0080	1.0712
	0.4001	0.3102	0.3095	0.0023	1.0580
295.65	0.5000	0.3268	0.3259	0.0027	1.0454
	0.6000	0.3297	0.3286	0.0032	1.0342
	0.6998	0.3488	0.3492	0.0012	1.0227
	0.8002	0.3578	0.3566	0.0034	1.0116
	0.8999	0.3623	0.3608	0.0042	1.0015
	1.0000	0.3566	0.3518	0.0137	1.0236
	0.0000	0.1036	0.1057	0.0201	1.0911
	0.1000	0.2125	0.2132	0.0033	1.0999
	0.2001	0.2609	0.2614	0.0020	1.0870
	0.2999	0.2985	0.2972	0.0044	1.0734
	0.4001	0.3181	0.3188	0.0023	1.0600
298.15	0.5000	0.3294	0.3340	0.0139	1.0478
	0.6000	0.3419	0.3386	0.0097	1.0359
	0.6998	0.3562	0.3573	0.0031	1.0239
	0.8002	0.3659	0.3646	0.0035	1.0130
	0.8999	0.3714	0.3700	0.0038	1.0027
	1.0000	0.3666	0.3625	0.0109	1.0256

Table 1-Experimental $x_{B(exp.)}$ and Calculated $x_{B(cal.)}$ Values of Mole Fraction Solubility and Density
(ρ) of Catechol for Various Initial Mole Fractions, (x_c^0), of 1-Propanol at Temperatures (293.15 to
313.15) K and Pressure 101.32 kPa^a .

	0.0000	0.1263	0.1232	0.0242	1.0997
	0.1000	0.2265	0.2260	0.0022	1.1039
	0.2001	0.2734	0.2725	0.0033	1.0899
	0.2999	0.3074	0.3079	0.0015	1.0762
200.65	0.4001	0.3301	0.3287	0.0041	1.0615
300.65	0.5000	0.3379	0.3426	0.0137	1.0493
	0.6000	0.3479	0.3487	0.0024	1.0372
	0.0998	0.3003	0.3000	0.0011	1.0201
	0.8999	0.3722	0.3792	0.0024	1.0132
	1.0000	0.3746	0.3731	0.0041	1.0273
	0.0000	0.1445	0.1420	0.0172	1.1089
	0.1000	0.2390	0.2392	0.0008	1.1068
	0.2001	0.2860	0.2844	0.0054	1.0923
	0.2999	0.3203	0.3187	0.0048	1.0789
	0.4001	0.3392	0.3390	0.0005	1.0642
303.15	0.5000	0.3585	0.3516	0.0192	1.0512
	0.6000	0.3583	0.3589	0.0018	1.0389
	0.6998	0.3776	0.3754	0.0057	1.0289
	0.8002	0.3827	0.3822	0.0012	1.0174
	0.8999	0.3877	0.3884	0.0018	1.0071
	1.0000	0.3823	0.3833	0.0027	1.0291
	0.0000	0.1621	0.1618	0.0018	1.1158
	0.1000	0.2533	0.2527	0.0022	1.1099
	0 2001	0 2973	0 2971	0.0008	1 0942
	0 2999	0 3301	0.3297	0.0012	1 0804
	0.4001	0.3513	0.3498	0.0042	1.0668
305 65	0.5000	0.3621	0.3410	0.0042	1.0544
000.00	0.5000	0.3680	0.3692	0.0027	1.0344
	0.0000	0.3000	0.3092	0.0032	1.0200
	0.0990	0.3839	0.3855	0.0040	1.0299
	0.0002	0.3914	0.3920	0.0015	1.0218
	0.8999	0.3949	0.3977	0.0070	1.0087
	1.0000	0.3899	0.3932	0.0085	1.0317
	0.0000	0.1781	0.1823	0.0239	1.1224
	0.1000	0.2664	0.2666	0.0006	1.1126
	0.2001	0.3082	0.3106	0.0080	1.0969
	0.2999	0.3395	0.3410	0.0043	1.0826
	0.4001	0.3570	0.3612	0.0118	1.0681
308.15	0.5000	0.3692	0.3711	0.0052	1.0560
	0.6000	0.3775	0.3796	0.0056	1.0419
	0.6998	0.3958	0.3963	0.0011	1.0320
	0.8002	0.4013	0.4024	0.0027	1.0227
	0.8999	0.4053	0.4069	0.0038	1.0111
	1.0000	0.3980	0.4028	0.0123	1.0340
	0.0000	0.2003	0.2032	0.0144	1.1280
	0.1000	0.2823	0.2808	0.0055	1.1153
310.65	0.2001	0.3252	0.3251	0.0001	1 1000
	0 2999	0 3514	0 3524	0.0027	1 0847
	0.4001	0.37/0	0.3721	0.002/	1.0047
	0.4001	0.5740	0.5751	0.0024	1.0700

	0.5000	0.3854	0.3816	0.0099	1.0575
	0.6000	0.3921	0.3900	0.0052	1.0457
	0.6998	0.4084	0.4078	0.0016	1.0344
	0.8002	0.4136	0.4135	0.0004	1.0239
	0.8999	0.4196	0.4161	0.0085	1.0133
	1.0000	0.4131	0.4121	0.0024	1.0364
	0.0000	0.2280	0.2241	0.0171	1.1328
	0.1000	0.2939	0.2953	0.0046	1.1184
	0.2001	0.3414	0.3405	0.0025	1.1024
	0.2999	0.3650	0.3640	0.0029	1.0873
	0.4001	0.3865	0.3856	0.0025	1.0728
313.15	0.5000	0.3896	0.3927	0.0080	1.0603
-	0.6000	0.4008	0.4006	0.0005	1.0480
	0.6998	0.4198	0.4200	0.0004	1.0365
	0.8002	0.4259	0.4252	0.0016	1.0264
	0.8999	0.4244	0.4252	0.0019	1.0157
	1.0000	0.4243	0.4210	0.0077	1.0396

aStandard uncertainties in u are u(T) = 0.1 K, $u(x_{C^0}) = 0.0002$, $u(x_B) = 0.003$, and $u(\rho) = 10 \text{ kg m}^{-3}$. The relative uncertainty in pressure ur (p) = 0.05.

Figure 1. Mole Fraction Solubility (x_B) Variation with Initial Mole Fraction (x_C^0) of 1-Propanol at Various Temperatures (T=293.15 K, T=295.65 K; T=298.15 K; T=300.65 K; T=303.15K; T=305.65 K; T=308.15 K; T=310.65 K and T=313.15 K).

The solubility of catechol in all solvents increases with temperature. At the same temperature, the solubility trend in solvent is 1-propanol > water + 1-propanol > water. This trend implies that solubility of catechol increases with increasing with mole fraction of 1-propanol, it is prefer to dissolve more in 1-propanol than water. The solubility of catechol in water+1-propanol mixture with x_c^0 increases with increases in x_B up $x_c^0=1$. This implies that there is strong dipole-dipole interaction between solute and solvent molecules.

Apelblat Model: The modified semi-empirical Apelblat model (eq 1) is a suitable method to correlate solubility data against temperature (Lourenço et al. 2012, Melo et al. 2013).

The equation is based on solid-liquid equilibrium theory provide excellent agreement between experimental and calculated values of solubility (Domańska U., Bogel-Łukasik R. 2005).

$$lnx_{B=}A + \frac{B}{T} + ClnT \qquad \dots \dots \dots \dots (1)$$

A, *B*, and *C* are the model parameters and T is temperature in Kelvin. *A* and *B* represent the nonidealities of the solutions in terms of the variation of activity coefficients, *C* reflects to the effect of temperature on the enthalpy of fusion (Apelblat A., Manzurola E. 1999). *A*, *B*, and *C* parameters are determined using non-linear least square fitting (Gans et al. 1996). Solubility values of catechol in water, methanol, and their mixtures are calculated by eq 1. Relative deviation (*RD*) (Guo et al. 2016) is calculated using eq 2.

$$RD = \frac{x_B^{exp.} - x_B^{cal.}}{x_B^{exp.}} \qquad \dots \dots \dots \dots \dots (2)$$

The data of experimental mole fraction solubility, calculated solubility and *RD* in monosolvent (water, methanol) and water-methanol mixtures are listed in Table 1. The values of parameters *A*, *B*, *C* along with co-relation coefficient (R^2) are listed in Table 2.

Solvents	Mole		D ?		
	fraction x_C^0	Α	В	С	Λ-
	0.0000	926.5154	-46178.9730	-135.8253	0.9971
	0.1000	78.1822	-5341.3275	-10.8489	0.9991
	0.2001	-161.7337	5893.9307	24.6812	0.9983
	0.2999	3.2809	-1273.3316	-0.0392	0.9971
1 Dromanal	0.4001	-99.1287	3451.0944	15.1662	0.9955
1-Propanoi	0.5000	-107.159	3966.755	16.28015	0.9767
	0.6000	11.8861	-1475.3680	-1.4077	0.9941
	0.6998	-152.1735	6016.6385	22.9859	0.9978
	0.8002	-137.8249	5406.7063	20.8301	0.9979
	0.8999	20.5386	-1712.8800	-2.7710	0.9919
	1.0000	107.5766	-5723.8774	-15.6896	0.9732

Table 2. Model Parameters and Correlation Coefficient of the Apelblat Equation.

Table 3. NIBS-Redlich-Kister model parameters.

T/K	Range of x_{C}^{0}	M_0	M_1	M_2	M_3	R^2
	I	Nater + 1-P	ropanol + Ca	itechol		
293.15	0.10-0.90	2.552	-1.679	4.141	-3.620	0.990
295.65	0.10-0.90	2.240	-1.538	3.439	-3.115	0.991
298.15	0.10-0.90	2.000	-1.417	3.035	-2.626	0.992
300.65	0.10-0.90	1.696	-1.235	2.405	-1.839	0.992
303.15	0.10-0.90	1.565	-1.083	1.932	-1.463	0.993
305.65	0.10-0.90	1.397	-0.960	1.708	-1.256	0.993
308.15	0.10-0.90	1.260	-0.798	1.606	-1.150	0.994
310.65	0.10-0.90	1.120	-0.742	1.299	-0.809	0.994
313.15	0.10-0.90	0.956	-0.660	0.758	-0.364	0.992

NIBS-Redlich-Kister Model

The solubility data at constant temperature is fitted into combined NIBS-Redlich-Kistermodel (Jouyban et al. 2002, Joyce et al. 1995, Acree W.E. and Zvaigzne A.I. 1991, Acree W. E. 1992).

$$lnx_{B} = x_{C}^{0}lnx_{1} + x_{A}^{0}lnx_{2} + x_{C}^{0}x_{A}^{0}\sum_{i=0}^{3}M_{i}(x_{C}^{0} - x_{A}^{0})^{i} \qquad \dots \dots$$

(3)

Where x_A^0 is initial mole fraction of water and x_1 , x_2 are solubilities of catechol in pure methanol and water, respectively. M_i is curve fit parameters (four parameter equation). All values of M_i along with R^2 value are listed in Table 3. The values of R^2 are close to unity shows that NIBS-Redlich-Kister model is very well applicable for this solubility data.

x_{C^0}	$\Delta H^{0}_{sol}/kJ K^{-1} m$	$\Delta G^{0}_{soln}/kJ K^{-1}$	$\Delta S^{0}_{soln}/KJK$	$T\Delta S^{0}_{soln}/KJK$	%ζН	%ζTS		
	01 1	moi •	1 <i>m</i> 01 1	1 <i>MOL</i> 1	_			
Water + 1-Propanol								
0.0000	41.8194	4.9954	121.4712	36.8240	53.18	46.82		
0.1000	17.0437	3.6092	44.3164	13.4345	55.92	44.08		
0.2001	13.1361	3.1530	32.9313	9.9831	56.82	43.18		
0.2999	10.4756	2.8808	25.0531	7.5948	57.97	42.03		
0.4001	9.4780	2.7170	22.3024	6.7610	58.37	41.63		
0.5000	8.0238	2.6252	17.8084	5.3986	59.78	40.22		
0.6000	8.6466	2.5809	20.0088	6.0657	58.77	41.23		
0.6998	7.8152	2.4549	17.6820	5.3603	59.32	40.68		
0.8002	7.4826	2.4120	16.7263	5.0706	59.61	40.39		
0.8999	7.2332	2.3843	15.9950	4.8489	59.87	40.13		
1.0000	8.0646	2.4246	18.6045	5.6400	58.85	41.15		

Table 5. Thermodynamic Functions Relative to Solution Process of Catechol at Tmean =302.928K

Thermodynamics Functions of Dissolution: According to the van't Hoff equation, the standard molar enthalpy change of solution ΔH^{0}_{soln} is generally obtained from the slope of the $ln x_{B}$ vs 1/T plot. Average temperature T_{mean} is introduced to obtain a single value of ΔG^{0}_{soln} and ΔS^{0}_{soln} in the temperature range studied.

$$T_{mean} \ \frac{n}{\sum_{i=1}^{n} \left(\frac{1}{T}\right)}$$

Where *n* is the number of experimental points. In the present work, $T_{mean} = 302.98$ K and the temperature range is (293.15 to 313.15) K in both pure solvents and binary solvent mixtures. Heat capacity of the solution can be assumed as constant. Hence values of ΔH^0_{soln} are derived using eq 5.

The lnx_B Vs 10000 (1/T - 1/Tmean) plot of different solutions including pure solvents and binary solvent mixtures are displayed in Fig. 2. From these figures, it can be seen that a trend of increasing solubility with temperature is observed. The slope and the intercept for each solvent are listed in Table 4. Thus the modified van't Hoff equation can be thought to be fit to calculate the enthalpy change of solution. The standard molar Gibbs energy change for the solution process ΔG^{0}_{solut} , can be calculated in the way similar to Krug et al. (Krug et al, 1976) as

$$\Delta G_{sol}^0 = -RT \times intercept \qquad \dots \dots \dots \dots (6)$$

In which the intercept used is that obtained in plots of lnx_B as a function of (1/T - 1/Tmean). The standard molar entropy change ΔS^{0}_{soln} is obtained from

$$\Delta S_{Sol}^0 = \frac{\Delta H_{Sol}^0 - \Delta H_{Sol}^0}{T_{mean}} \qquad \dots \dots \dots \dots \dots (7)$$

Both ΔG^{0}_{soln} and ΔS^{0}_{soln} pertain to the mean temperature T_{mean} = 302.92 K. The results are shown in Table 5, together with $\%\zeta H$ and $\%\zeta TS$. It is worthy to note that relative contribution of enthalpy $\% \zeta H$ and $\% \zeta TS$ which are defined as

$$\%\zeta_{H} = \frac{\Delta H_{Sol}^{0}}{|\Delta H_{Sol}^{0}| + |T\Delta S_{Sol}^{0}|} X100 \qquad(8)$$

$$\varphi_{A}\zeta_{HS} = \frac{|T\Delta S_{Sol}^{0}|}{|X|} X100 \qquad(9)$$

$$\Delta G_{sol}^{0} = |\Delta H_{sol}^{0}| + |T\Delta S_{sol}^{0}|^{A \, 100}$$
(9)
imply used to calculate the main contributors of enthalpy or entropy to ΔG_{soln}^{0}

can be si (Cui et al, 2013). The values of ΔH^0 and ΔS^0 for all solutions are positive indicating the solution process as endothermic. The contribution of enthalpy is more as compared to entropy for all solutions.

Table 4. Slope(*m*) and Intercept(*c*) of the lnx_B vs. 10000($1/T - 1/T_{mean}$) Plot along with R^2

Water + 1-Propanol+Catechol						
x_c^0	т	С	R^2			
0.0000	-5032	-1.982	0.992			
0.1000	-2054	-1.432	0.999			
0.2001	-1582	-1.251	0.996			
0.2999	-1261	-1.143	0.997			
0.4001	-1143	-1.078	0.995			
0.5000	-965.1	-1.042	0.975			
0.6000	-1048	-1.024	0.995			
0.6998	-946.5	-0.974	0.993			
0.8002	-903.4	-0.957	0.994			
0.8999	-873.4	-0.946	0.993			
1.0000	-970.9	-0.962	0.977			

Density values are used to calculate excess molar functions (Pawar R.R. and Aher C. S., 2018).

CONCLUSIONS

The solubility of catechol is more in 1-propanol than in water and increases with increase in mole fraction of 1-propanol. ΔH^{0}_{soln} values are higher in water than water+1-propanol mixture and lowest in 1-propanol indicates the solubility trend in various solvents. Density of solution is depends on solubility of solute and solvent system both.

Solubility data and Thermodynamic functions including ΔH^{0}_{soln} , ΔG^{0}_{soln} , and ΔS^{0}_{soln} of catechol in water, 1-propanol and their mixture are more useful in field of physical chemistry and chemical engineering calculations involving fluid flow, heat and mass transfer, pharmaceutical industry, agriculture, biology, medicine. Solubility data is required for selection of proper solvent and design an optimized crystallization process.

ACKNOWLEDGMENTS

The author is thankful to DST-FIST New Delhi for instrumental grant to the department. The authors express their sincere thanks to the general secretary M. G. Vidyamandir and Principal M.S.G. College, Malegaon Camp, for providing laboratory facility and encouragement.

Funding

This research is financially supported by UGC, WRO, Pune, India.

REFERENCES

- Zheng, et al, (2008). Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity. *Eur. J. Pharmacol*, 588:106–113.
- Stephan, H. and Stephen, T. (1993). Solubilities of Inorganic and Organic compounds; Pergamon Press: Oxford, England, Vol. 1, Part -1: 436.
- Stephan, H. and Stephen, T. (1963). Solubilities of Inorganic and Organic compounds; Pergamon Press: Oxford, England, Vol. 1, Part-1: 1027, 1084, 1216.
- Pawar, et al (2012). Solubility, density and solution thermodynamics of NaI in different pure solvents and binary mixtures. J. Chem. Eng. Data, 57: 3563-3572.
- Pawar, et al (2009). Solubility and density of potsium iodide in binary water-ethanol solvent mixtures at (298.15, 303.15, 308.15, and 313.15) *K. J. Chem. Eng. Data*, 54: 1935–37.
- Pawar, et al (2010) Solubility and density of potsium iodide in binary water-propan-1-ol solvent mixtures at (298.15, 303.15, 308.15 and 313.15) *K. J. Chem. Eng. Data*, 55: 1314–16.
- **Kadam, et al, (2006).** Density, viscosities, and ultrasonic velocity studies of binary mixtures of chloroform with propan-1-ol and butan-1-ol at (303.15 and 313.150) *K. J. Chem. Eng. Data*, 51: 60–63.
- Hasan, et al, (2006). Densities, viscosities and speed of sound studies of binary mixtures of methylbenzene with heptan-1-ol, octan-1-ol and decan-1-ol at (303.15 and 313.15) *K. J. Chem. Eng. Data*, 51:1922–26.
- Marsh, K. N. (1987). Recommended Reference Materials for the Realisation of Physicochemical Properties; Blackwell Scientific Publications: Oxford, U.K.
- Pawar, R.R. and Aher, C. S. (2017). Molecular interactions in binary solvent mixtures and Catechol in pure, binary solvent mixtures at 293.15 to 313.15 K with DFT study, *International Journal of Scientific Research in Science, Engineering and Technology*, 3(6): 432-447.
- Pawar, R.R. and Aher, C. S. (2017). DFT study, molecular interactions of Hydroquinone in water, methanol and binary solvent mixtures of water+methanol at different temperatures, *International Journal of Current Advance Research*, 6(11): 7693-7698.
- **Pawar, R.R. and Aher, C. S. (2017).** Solubility of phenolic compounds in pure water and alcohols with FTIR and DFT study, *International Journal of Scientific Research in Science, Engineering and Technology*, 3(8): 778-790.
- **Pawar, R.R. and Aher, C. S., (2018).** Molecular interactions of 2-Naphthol in binary solvent mixtures of water+methanol and water+ethanol with DFT study, *International Journal of Chemical and Physical Sciences*, 7(1): 78-88.
- Lourenço, et al, (2012). J. Chem. Eng. Data, 57, 1525-1533.

Melo, et al, (2013). Fluid Phase Equilibria, 338: 209–216.

Domańska, U. and Bogel-Łukasik, R., (2005). J. Phys. Chem. B., 109: 12124–12132.

- Apelblat, A. and Manzurola, E. (1999). J. Chem. Thermodyn, 31: 85–91.
- **Gans, et al (1996).** Investigation of equilibria in solution. Determination of equilibrium constants with hyperquad suite of program, Talanta, 43: 1739–1753.

- Guo, et al. (2016). Measurement and correlation of solubility of pronamide in five organic solvents a (278.15-323.15) *K. J. Chem. Thermodynamics*, 99: 11-15.
- Jouyban, et al, (2002). Solubility prediction of anthracene in mixed solvents using a minimum number of experimental data. *Chem. Pharm. Bull*, 50 (1): 25–25.
- **Joyce, et al, (1995).** Solubility of Anthracene in binary alcohol + 1,4-dioxane solvent mixtures. *J. Chem. Eng. Data*, 40: 1124–1126.
- Acree, W.E. and Zvaigzne, A. I., (1991). Thermodynamic properties of non-electrolyte solutions: part 4. estimation and mathematical representation of solute activity coefficients and solubilities in binary solvents using the NIBS and modified Wilson equations. *Thermochim. Acta*, 178: 151–167.
- Acree, W. E. (1992). Mathematical representation of thermodynamic properties: Part 2. Derivation of combined nearly ideal binary solvents NIBS/Redlich-Kister mathematical representation from a two body and three body interactional mixing model. *Thermochim. Acta*, 198: 71–79.
- Krug, et al, (1976). Enthalpy-Entropy Compensation. 2. Separation of the Chemical from the Statistical Effect. *J. Phys. Chem*, 80: 2341–2351.
- Cui, et al, (2013). Fluid Phase Equilib, 337: 354-362.
- Pawar, R.R. and Aher, C. S. (2018). DFT Study, Volume Changes with Molecular Interactions of Hydroquinone in Water, Alcohol and Binary Solvent Mixtures of Aqueous Alcohol at Different Temperatures, *International Journal of Chemical and Physical Sciences*, 7, Special Issue, ICAFM (Part-II): 726-745.

Corresponding author: Dr. Chandrakant Shivaji Aher, M. S. G. College, Malegaon Camp, Malegaon, Dist. Nashik, Maharashtra, India. Email: chandsaher1980@rediffmail.com